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Evaluation of Distance Metrics for
Ligand-Based Similarity Searching

Uli Fechner and Gisbert Schneider*?!

Ligand-based similarity metrics are frequently and successfully
employed for diversity analysis and the selection of activity-en-
riched subsets in early-phase virtual screening and compound-
library design."* As they come in many varieties, it is not trivi-
al to choose the most appropriate concept for the task at
hand. Fundamentally, these methods rely on representative ref-
erence structures (also termed “query” or “seed” structures),
molecular descriptors that are correlated with biological activi-
ty, and an appropriate similarity metric. “Retrospective screen-
ing” provides a means of evaluating these factors. The basic
idea is to select a subset from a large pool of compounds (typ-
ically a compound database or a virtual library) and try to max-
imize the number of known actives in the subset, thereby
forming a “focused library”.”! Subset selection is based on the
pairwise similarity between the query structure and each mole-
cule in the pool. The result of this calculation is a list ranked
by similarity. Such a retrospective screening experiment can be
rated by the enrichment factor, ef [Eq. (1)].>® A method that is
superior to a random selection of compounds returns an ef>1.

(%)
Sall Pall

P,, is the total number of compounds in the database
(“pool”), and S, is the number of molecules in the subset. P,
is the number of “active” molecules in the pool, and S, is the
number of actives found in the subset.In this study, we exam-
ined the influence of seven similarity measures on the enrich-
ment of actives using a pharmacophore-based correlation
vector descriptor and 12 different datasets. In particular, we
evaluated to what extent different similarity measures comple-
ment each other in terms of the retrieved active compounds.
The knowledge gained will provide a basis for prospective sim-
ilarity searching studies.

All molecules were extracted from the COBRA database (ver-
sion 2.1), which is a collection of reference molecules for
ligand-based library design compiled from recent scientific lit-
erature.”? Twelve subsets were compiled from the 4705 COBRA
compounds, containing ligands that bind to angiotensin con-
verting enzyme (ACE, 44 compounds), cyclooxygenase 2
(COX2, 93 compounds), corticotropin releasing factor (CRF) an-
tagonists (63 compounds), dipeptidyl-peptidase (DPP) IV (25
compounds), G-protein coupled receptors (GPCR, 1642 com-
pounds), human immunodeficiency virus protease (HIVP, 58
compounds), nuclear receptors (NUC, 211 compounds), matrix
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metalloproteinase (MMP, 77 compounds), neurokinin (NK) re-
ceptors (188 compounds), peroxisome proliferator-activated re-
ceptor (PPAR, 35 compounds), beta-amyloid converting
enzyme (BACE, 44 compounds), and thrombin (THR, 188 com-
pounds). All molecules of one subset were considered as
“active” at a time, and the respective remainder of the COBRA
database as “inactive”. The choice of these subsets was based
on different levels of specificity. This means that we included
sets of ligands binding to individual receptor subtypes (e.g.,
BACE, THR) as well as very loosely defined classes of bioactive
compounds (e.g., GPCR, NUC). This concept reflects the idea of
current chemogenomics approaches that try to design focused
libraries at such different levels of specificity.®! The group of
nuclear receptors, for example, consists of more than 60 pro-
teins like PPAR, CAR, LXR, and FXR, and comprises a variety of
biological functions.” It can be useful to design compound li-
braries even at this coarse level in order to de-orphanize recep-
tors of the same family or identify multiple compound activi-
ties within the same receptor class."”

In the present study, compounds were encoded by the CATS
descriptor, which belongs to the category of atom-pair descrip-
tors™ and encodes topological pharmacophore informa-
tion."””

A lot of different similarity metrics exist. In this study, seven
such metrics were compared (Table 1). We selected six estab-
lished metrics that are frequently employed for chemical simi-
larity searching and added the spherical distance to this list be-
cause it has not been used for this purpose before. As the
CATS descriptor is composed of non-binary values, the formu-

Table 1. Similarity measures for continuous variables. A and B are objects
(here: molecules), i and j are attributes of these objects, n is the total
number of attributes of an object, x;, the value of the jth attribute of object
A, S, denotes the similarity between objects A and B, and D, the distance
between objects A and B.
Name Equation Range
Manhattan distance j=n 0 to oo
Dpg= 2" X=Xl
Jj=1
Euclidian distance j=n 0to e
Dag=1/ > (%a—xs)
j=1
Tanimoto coefficient & —0.33to +1
EXMX;B
Sae=T77 = =
(xa)? + (x8)? me‘a
= = =
. o
Soergel distance S as Oto1
DA,Bf J ln L
max(xja X )
=
. .- j=n _
Dice coefficient ZZX.m 1to +1
5A,B - ﬁ
E xin)? + E X8)?
= =
Cosine coefficient & —1to +1
Z jaXis
Sap= 1/'7
Z ) Z %8)?
= =
Spherical distance DAvsfacos(A *By) ! Otom
A & XA B = Xig
[a] Ay= A= T-[b]BN:ﬁ: . .
j=1 . " j=1 S22
;X\ ;X.B
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lae for continuous variables were employed for all similarity
metrics."

We calculated the enrichment factors for the 12 datasets
from the first five percent (235 compounds) of the screened
database. Apart from in the GPCR dataset, we were able to
considerably increase the percentage of active compounds,
obtaining an average ef > 4. The greatest enrichment factor
(ef=12) was yielded for the ACE dataset with the Soergel dis-
tance. This might be a consequence of the close structural sim-
ilarity of the ACE ligands that were used as reference. In con-
trast, the GPCR set represented a very loosely defined compila-
tion of molecules containing modulators of all classes of
GPCREs.

Enrichment factors for the same dataset but different similar-
ity metrics varied only slightly. The deviations ranged from
zero (DPP-IV, GPCR, MMP, NK, and BACE) to a maximum of two
units (ACE and HIVP). For almost all datasets, the Manhattan
and the Soergel distances yielded the overall highest enrich-
ment factors. It must be stressed that the homogeneity of the
enrichment factors of different similarity measures does not
reveal information about the homogeneity of the retrieved
active molecules. The enrichment factor discriminates only be-
tween “active” and “inactive”. Thus it is not advisable to com-
pare the performance of different similarity searching methods
exclusively by means of the enrichment factor. The enrichment
factor represents a measure for quantification of a similarity
search, but it does not comprise qualitative considerations.
Therefore, we then analyzed which active molecules were re-
trieved by each similarity metric.

Retrospective screening with the seven different similarity
metrics yielded seven similarity-ranked lists. The active com-
pounds (“hits”) that were found within the first 5% of each list
were extracted. Then we stepwise united the hits found in the
individual lists. This procedure led to the retrieval of signifi-
cantly more hits than found by any single similarity metric.
Figure 1 illustrates this gradual rise for the NUC dataset. Six-
teen of these actives were retrieved by each similarity metric,
examples are darglitazone 1, a PPAR-y ligand,"¥ and com-

T T '

I AUBUCUDUEUFUG
I AUBUCUDUEUF

i AUBUCUDUE

I AuBUCUD

| AUBUC

l

5 15 25 30

cumulative percentage of actives found

Figure 1. The “cumulative percentage” of active compounds found among the
top-ranking 5% of the similarity-ranked list that results from a retrospective
screening (white bars). The NUC subset of the COBRA database was selected as
an example. A) Manhattan distance, B) Euclidian distance, C) Tanimoto coeffi-
cient, D) Soergel distance, E) Dice coefficient, F) Cosine coefficient, G) Spherical
distance. Black bars show the percentage of actives that were retrieved by the
respective similarity metric and no more than one additional similarity metric.
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pound 2, an estrogen receptor ligand."™ In contrast, structures
3 (Mifepristone; an antiprogestine and glucocorticoid receptor
antagonist; R: bile acid conjugate),"® 4 (LG-100364, a “rexi-
noid” binding to the PPAR-y/RXR heterodimer),"” and 5 (Ada-

[15

0,
/-0

—

N

palene, a selective retinoic acid receptor B antagonist)'® repre-
sent hits that were mutually retrieved only by the cosine coef-
ficient and the spherical distance. None of the other similarity
metrics claimed these known nuclear receptor ligands among
the top five percent of the ranked lists. This demonstrates that
it might be wise to combine individual results for a focused li-
brary rather than considering only those compounds that are
jointly retrieved by each metric. It should be stressed that such
a retrospective screening with a heterogeneous set of query
structures, as in our NUC example, will result in a focused li-
brary reflecting the same level of specificity. In this study it
was demonstrated that this approach is applicable to the
design of libraries that are focused on a receptor class and not
a single receptor subtype.

“Cumulative percentages” for all seven similarity metrics al-
lowed for the retrieval of up to 74% of the actives in the first
five percent of the database in the case of ACE. The increase
of the cumulative percentages for all seven metrics compared
to the employment of only the Manhattan distance ranged
from additional 5% (COX2) to 28% (NUC and MMP) with an
average of 19% over all 12 datasets.

Each similarity metric alone proved to be able to retrieve
and increase the percentage of active compounds in a focused
library. Nevertheless, their respective definition of “distance” in
chemical space (in this study, a topological pharmacophore
space) has a strong impact on the structural diversity among
the highest-ranking active compounds. This is illustrated by
black bars in Figure 1. These black bars indicate the percent-
age of active compounds that were retrieved by both the re-
spective similarity metric and exactly one other metric. It
should be stressed that the example shown in Figure 1 does
not justify general conclusions to be drawn concerning the
usefulness of a similarity metric, as their pair-wise performance
differed for the various sets of ligands investigated here. We
conclude that different similarity metrics complement each
other. Therefore, it might be advantageous to employ several

540

molecular descriptors and similarity metrics in parallel and ben-
efit from a unification of the various definitions of “chemical
similarity”. This idea supplements earlier findings by Bradshaw
and co-workers who demonstrated that combining different
similarity metrics can lead to improved en-
richment of actives by applying “fusion rules”
to the individual ranked lists."” In the present
study we demonstrate that unification of the
sets of highest-ranking compounds that were
retrieved with the different similarity metrics
can serve the same purpose.
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